Ettd. 1884	P.R.Government College (Autonomous) KAKINADA	Program&Semester II B.Sc. (IV Sem)			
CourseCode	TITLEOFTHECOURSE				
MAT-401/4201	Real Analysis				
Teaching	HoursAllocated:60(Theory)	L	Т	P	С
Pre-requisites:	Basic Mathematics Knowledge on number system.	4	1	-	4

Course Objectives:

To formalise the study of numbers and functions and to investigate important concepts such as limits and continuity. These concepts underpin calculus and its applications.

Course Outcomes:

On Co	empletion of the course, the students will be able to-
C01	Get clear idea about the real numbers and real valued functions.
CO2	Obtain the skills of analyzing the concepts and applying appropriate methods for testing convergence of a sequence/ series.
CO3	Test the continuity and differentiability and Riemann integration of a function.
CO4	Know the geometrical interpretation of mean value theorems.

Course with focus on employability/entrepreneurship /Skill Development modules

Skill Development Employab	pility	Entrepreneurship	
-----------------------------	--------	------------------	--

UNIT I (12 Hours)

Introduction of Real Numbers (No question is to be set from this portion)

Real Sequences: Sequences and their limits, Range and Boundedness of Sequences, Limit of a sequence and Convergent sequence. The Cauchy's criterion, properly divergent sequences, Monotone sequences, Necessary and Sufficient condition for Convergence of Monotone Sequence, Limit Point of Sequence, Subsequences, Cauchy Sequences – Cauchy's general principle of convergence theorem.

UNIT II: (12 Hours)

INFINITIE SERIES:

Series : Introduction to series, convergence of series. Cauchy's general principle of convergence forseries tests for convergence of series, Series of Non-Negative Terms.

- 1. P-test
- 2. Cauchy's nth root test or Root Test.
- 3. D'-Alemberts' Test or Ratio Test.

UNIT III: (12 Hours)

CONTINUITY:

Limits: Real valued Functions, Boundedness of a function, Limits of functions. Some extensions of the limitconcept, Infinite Limits. Limits at infinity. (No question is to be set from this portion).

Continuous functions: Continuous functions, Combinations of continuous functions, Continuous Functionson interval, Uniform Continuity.

UNIT IV: (12 Hours)

DIFFERENTIATION AND MEAN VALUE THEOREMS: The derivability of a function, on an interval, at a point, Derivability and continuity of a function, Graphical meaning of the Derivative, Mean value Theorems; Rolle's Theorem, Lagrange's Theorem, Cauchy's Mean value Theorem.

UNIT V: (12 Hours)

RIEMANN INTEGRATION: Riemann Integral, Riemann integral functions, Darboux theorem. Necessary and sufficient condition for R – integrability, Properties of integrable functions, Fundamental theorem of integral calculus, First mean value Theorem.

Co-Curricular Activities

(15 Hours)

Seminar/ Quiz/ Assignments/ Real Analysis and its applications / Problem Solving.

TEXT BOOK:

1. Introduction to Real Analysis by Robert G.Bartle and Donlad R. Sherbert, published by JohnWiley.

REFERENCE BOOKS:

- 1. A Text Book of B.Sc Mathematics by B.V.S.S. Sarma and others, published by S. Chand &Company Pvt. Ltd., New Delhi.
- 2. Elements of Real Analysis as per UGC Syllabus by Shanthi Narayan and Dr. M.D. Raisinghania, published by S. Chand & Company Pvt. Ltd., New Delhi

Additional Inputs:

Taylor's Theorem, McLaren theorem.

CO-POMapping:

(1:Slight[Low]; 2:Moderate[Medium]; 3:Substantial[High], '-':NoCorrelation)

	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	PSO1	PSO2	PSO3
CO1	3	3	2	3	2	3	1	2	2	3	2	3	2
CO2	3	2	3	3	2	3	3	1	3	2	3	2	1
CO3	2	3	2	3	2	3	2	2	2	3	2	2	3
CO4	3	2	3	2	2	1	3	3	2	1	3	1	2

BLUE PRINT FOR QUESTION PAPER PATTERN SEMESTER-IV

Unit	TOPIC	S.A.Q	E.Q	Marks allotted to the Unit
I	Real Sequences	1	1	15
II	Infinite Series	2	2	30
III	Continuity	2	1	20
IV	Differentiation And Mean value theorems	1	1	15
V	Riemann Integrations	1	1	15
	Total	7	6	95

S.A.Q. = Short answer questions (5 marks)

E.Q = Essay questions (10 marks)

Short answer questions $: 4 \times 5 = 20 \text{ M}$

Essay questions $: 3 \times 10 = 30 \text{ M}$

Total Marks = 50 M

P.R. Government College (Autonomous), Kakinada II year B.Sc., Degree Examinations - III Semester Mathematics Course: REAL ANALYSIS Paper IV (Model Paper w.e.f. 2023-24)

Time: 2Hrs Max. Marks: 50

SECTION-A

Answer any three questions selecting atleast one question from each part

Part - A

 $3 \times 10 = 30$

- 1. Show that a monotonic sequence is convergent iff it is bounded.
- 2. State and prove Cauchy's n^{th} root test.
- 3. State and prove Leibnitz test.

Part - B

- 4. State and Prove Intermediate value theorem.
- 5. State and Prove Role's theorem.
- 6. State and prove fundamental theorem of Integral Calculus.

SECTION-B

Answer any four questions

4 X 5 M = 20 M

- 1. Prove that every convergent sequence is a Cauchy sequence
- 2. If $\sum u_n$ convergences absolutely then prove that $\sum u_n$ converges.
- 3. Test for the convergence of $\sum_{n=1}^{\infty} \frac{1.3.5...(2n-1)}{2.4.6...2n} x^{n-1} (x > 0)$
- 4. Examine for continuity the function f defined by f(x) = |x| + |x 1| at 0 and 1
- 5. Show that $f: R \to R$ defined by f(x) = 1 if $x \in Q$; f(x) = -1 if $x \in R Q$ is discontinuous for all $x \in R$.
- 6. Show that $f(x) = x \sin(1/x)$, $x \ne 0$; f(x) = 0, x = 0 is continuous but not derivable at x = 0.
- 7. By considering the integral $\int_0^1 \frac{1}{1+x} dx$ show that $\log 2 = \lim_{n \to \infty} \left[\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right]$

Ettd. 1884	P.R.Government College (Autonomous) KAKINADA	Program&Semester II B.Sc. (IV Sem)				
CourseCode	TITLEOFTHECOURSE					
MAT-401P	Real Analysis					
Teaching	HoursAllocated:30(Practicals)	L	Т	P	С	
Pre-requisites:	Basic Mathematics Knowledge on number system.	-	-	2	1	

UNIT I (12 Hours)

Introduction of Real Numbers (No question is to be set from this portion)

Real Sequences: Sequences and their limits, Range and Boundedness of Sequences, Limit of a sequence and Convergent sequence. The Cauchy's criterion, properly divergent sequences, Monotone sequences, Necessary and Sufficient condition for Convergence of Monotone Sequence, Limit Point of Sequence, Subsequences, Cauchy Sequences – Cauchy's general principle of convergence theorem.

UNIT II: (12 Hours)

INFINITIE SERIES:

Series : Introduction to series, convergence of series. Cauchy's general principle of convergence forseries tests for convergence of series, Series of Non-Negative Terms.

- 4. P-test
- 5. Cauchy's nth root test or Root Test.
- 6. D'-Alemberts' Test or Ratio Test.

UNIT III: (12 Hours)

CONTINUITY:

Limits: Real valued Functions, Boundedness of a function, Limits of functions. Some extensions of the limitconcept, Infinite Limits. Limits at infinity. (No question is to be set from this portion).

Continuous functions: Continuous functions, Combinations of continuous functions, Continuous Functionson interval, Uniform Continuity.

UNIT IV: (12 Hours)

DIFFERENTIATION AND MEAN VALUE THEOREMS: The derivability of a function, on an interval, at a point, Derivability and continuity of a function, Graphical meaning of the Derivative, Mean value Theorems; Rolle's Theorem, Lagrange's Theorem, Cauchy's Mean value Theorem.

UNIT V: (12 Hours)

RIEMANN INTEGRATION: Riemann Integral, Riemann integral functions, Darboux theorem. Necessary and sufficient condition for R – integrability, Properties of integrable functions, Fundamental theorem of integral calculus, First mean value Theorem.

TEXT BOOK:

1. Introduction to Real Analysis by Robert G.Bartle and Donlad R. Sherbert, published by JohnWiley.

REFERENCE BOOKS:

- 3. A Text Book of B.Sc Mathematics by B.V.S.S. Sarma and others, published by S. Chand &Company Pvt. Ltd., New Delhi.
- 4. Elements of Real Analysis as per UGC Syllabus by Shanthi Narayan and Dr. M.D. Raisinghania, published by S. Chand & Company Pvt. Ltd., New Delhi

Semester – IV End Practical Examinations Scheme of Valuation for Practical's

Time: 2 Hours Max.Marks: 50

➤ Record - 10 Marks

➤ Viva voce - 10 Marks

> Test - 30 Marks

➤ Answer any 5questions. At least 2 questions from each section. Each question carries 6 marks.

BLUE PRINT FOR PRACTICAL PAPER PATTERN COURSE-IV, REAL ANALYSIS

Unit	ТОРІС	E.Q	Marks allotted to the Unit
I	Real Sequences	1	06
II	Infinite Series	2	12
III	Continuity	1	06
IV	Differentiation And Mean value theorems	2	12
V	Riemann Integrations	2	12
	Total	08	48

P.R. GOVT. COLLEGE (AUTONOMOUS), KAKINADA

Ilyear B.Sc., Degree Examinations - IV Semester Mathematics Course-IV: REAL ANALYSIS (w.e.f. 2022-23 Admitted Batch)

Practical Model Paper (w.e.f. 2023-2024)

Answer any 5questions. At least 2 questions from each section.

Time: 2Hrs

 $5 \times 6 = 30 \text{ Marks}$

Max. Marks: 50M

SECTION - A

- 1. Prove that the sequence $\{s_n\}$ defined by $s_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}$ is convergent.
- 2. Examine the convergence of $\sum_{n=1}^{\infty} (\sqrt{n^3 + 1} \sqrt{n^3})$.
- 3. Test for convergence of $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n} (1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n})$.
- 4. If $f: [a, b] \to R$ is continuous on [a, b], then f is bounded on [a, b] and attains its bounds or infimum and supremum

SECTION - B

- 7. Find c of Cauchy's mean value theorem for $f(x) = \sqrt{x}$, $g(x) = \frac{1}{\sqrt{x}}$ in [a, b] where 0 < a < b.
- 5. Show that $\frac{v-u}{1+v^2} < tan^{-1}v tan^{-1}u < \frac{v-u}{1+u^2}$ for 0 < u < v. Hence deduce that $\frac{\pi}{4} + \frac{3}{25} < tan^{-1} \frac{4}{3} < \frac{\pi}{4} + \frac{1}{6}$
- 6. If $f(x) = x^2 \forall x \in [0,1]$ and $P = \{0,1/4, 2/4, 3/4, 1\}$, then find U(P,f) and L(P,f).
- 7. Prove that $\frac{\pi^3}{24} \le \int_0^{\pi} \frac{x^2}{5+3\cos x} dx \le \frac{\pi^3}{6}$.
 - > Record 10 Marks
 - ➤ Viva voce 10 Marks