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GROUP THEORY



Group Theory
Binary Operation :
Let S be a non-empty set. If f: S x S → S is a mapping, then f is 

called binary operation or binary composition in S or on S.
Thus if a relation in S such that every pair ( distinct or equal ) 
of elements of S  taken in definite order is associated with a 
unique element of S then it is called a binary operation in S. 
Otherwise the relation is not binary operation in S and the 
relation is simply an operation in S.

Symbolism :
• For a,b ϵ S => a + b ϵ S then “+ “ is a binary operation in S.
• For a,b ϵ S => a • b ϵ S then “• “ is a binary operation in S.
• For a,b ϵ S => a○b ϵ S then “ ○ “is a binary operation in S.
• This also called closure law. 



Ex : 1.  + , • are binary operations in N , since for a,b ϵ N 
=> a + b ϵ N and a • b ϵ N . In other words N is said to 
be closed w.r.t the operation ‘+ ‘ and ‘ • ‘
2. the operations subtraction ( - ) and division     ( ÷ ) 

are not binary operations in N for 3, 5 ϵ N does not 
imply 3-5ϵ N and 3/5 ϵ N.

Algebraic Structure :
A non-empty set G equipped with one or more 

binary operations is called an algebraic structure or 
an algebraic system . 

If ‘ ○ ‘ is a binary operation on G , then the algebraic 
structure is written as ( G,○ ).

Ex: ( N,+ ), ( Q,- ), ( R,+ ) are algebraic structure.



Associative Law :
‘ ○ ‘ is a binary operation in a set S. If for a,b,c ϵ S , 

(a○b)○c = a○(b○c) then ‘ ○ ‘ is said to be associative in S . 
This is called Associative law . Otherwise ‘ ○ ‘ is said to be 
not associative in S .
Ex: 1.  ‘+ ‘ and ‘ . ‘ are associative in N since for a,b,c ϵ N,    

(a+b)+c = a+(b+ c) and a(bc)=(ab)c .
2. ‘○’ is a composition in R such that a○b = a+3b for 

a,b ϵ R. Then ‘○’ is not associative in R. 
Identity Element :
Let S be a non-empty set and ‘○’ be a binary operation on S.

1.  If there exists an element e1 ϵ S such that e1○a=a for       
a ϵ S then e1 is called a left identity of S w.r.t. the  
operation ‘○’ 



2. If there exists an element e2 ϵ S such that a○e2=a for   
a ϵ S then e2 is called a right  identity of S w.r.t. the 
operation ‘○’ .

3. If there exists an element e ϵ S such that e is both left  
and a right identity of S w.r.t. ‘○’ , then e is called an  
identity of S .

Ex: 1.In the algebraic system ( Z,+ ), the number 0 is an 
identity element.

2. In the algebraic system ( R, • ), the number 1 is 
an identity element.

Invertible Element :
Let ( S,○ ) be an algebraic structure with the identity

element e in S w.r.t. ‘○’.
i)  An element a ϵ S is said to be left invertible or left

regular if there exists an element x ϵ S such that x○a = e .  
x is called a left inverse of a, w.r.t. ‘○’ .



ii) An element a ϵ S is said to be right  invertible or right  
regular if there exists an element y ϵ S such that a○y = e . 
y is called a right inverse of a, w.r.t. ‘○’ .
Iii) An element x which is both a left inverse and a right 
inverse of ‘a’ is called an inverse of ‘a’ and ‘a’ is said to 
be invertible or regular.

Semi Group :

An Algebraic structure ( S,○ ) is called a semi

Group if the binary operation ‘○’ is associative in S .

Ex: 1. ( N,+ ) is a semi Group. For a,b ϵ N => a + b ϵ N 
and  (a+b)+c = a+(b+ c) .

2. ( Q,- ) is not a semi Group . For 5, 3/2, 1 ϵ Q does 
not imply {5-(3/2) } -1 = 5- {(3/2)-1}.



Monoid:
A semi Group ( S,○ ) with the identity element 

w.r.t. ‘○’ is known as a monoid. i.e ( S,○ ) is a monoid if 
S is a non-empty set and ‘○’ a binary operation in S 
such that ‘○’ is associative and there exists an identity 
element w.r.t. ‘○’ .
Ex: 1. ( Z,+ ) is a monoid and the identity element is 0.

2. ( Z,. ) is a monoid and the identity element is 1.
Group:

If G is a non-empty set and ‘○’ is a binary operation
defined on G such that the following three laws are
Satisfied then ( G,○ ) is a group.
i). Associative law

ii). Identity law
iii). Inverse law.
Ex : ( Z,+ ), ( Q,+ ), (R,+ ), ( C,+ ) are all groups.



Note :
i)    A group is an algebraic structure. It can also be written by 
< G,○ >.
Ii)  A semi group ( G,○ ) is a group if identity law and inverse 
law are satisfied.
Iii)  A monoid ( G,○ ) is a group if inverse law is satisfied.

Abelian Group or Commutative Group :

For the Group a,b ϵ G, a○b = b○a is satisfied , then ( G,○ )

is called an abelian group or a commutative group.

Ex : ( Z,+ ) is a commutative group.

Finite and Infinite Group :

If the set G contains a finite number of elements then the

group ( G,○ ) is called a finite group.

Otherwise the group ( G,○ ) is called an infinite group.



Order of a Group :
The number of elements in a finite group ( G,○ ) is called 

the order of the group and is denoted by O(G). If G is 
infinite , then we say that the order of G is infinite.
Thus : i) If the number of elements in a group G is n,                      
then O(G) = n.
ii) If the group G is finite we some times write O(G) < ∞ .
iii )  If O(G) = 2n, nϵ N,we say that the group is of even 

order.
iv ) If O(G) = 2n-1, nϵ N we say that the group is of odd 

order.

Cancellation Laws :

Let S be non-empty set and ○ be binary operation on S.

For a,b,c ϵ S,



i) a○b = a○c => b = c   ( is called left cancelation law )
ii) b○a = c○a => b = c (is called Right cancelation law )
i) and  (ii) are called cancelation laws.

Theorem :
In a group G, identity element is unique.
Proof:

If possible let e1 , e2 be two identity elements in the 
group ( G,○ ).

Therefore  e1○e2 = e2○e1 = e2 is an identity in G.......... (i)            
And  e2○e1 = e1○e2 = e1 is an identity in ............ (ii)

Therefore from (i) and (ii) we get  e1=e2

Hence identity element is unique.



Theorem :
In a group G, inverse of any element is unique.
Proof:
Let e be the identity element in the group (G, • ).
If a ϵ G then a will have an inverse.
If possible , let b, c ϵ G be two inverses of a in G.
Therefore a.b = b.a = e and a.c = c.a = e .
Now c.(a.b) = c.e = c .............. (i)
And c.(a.b) = (c.a).b = e.b = b  ...........(ii)

From (i) and (ii) we get   b = c.

Therefore inverse of any element is unique.



1. Show that set Q+ of all +ve rational numbers forms 
an abelian group under the composition defined by * 
such that a*b = ab/3 for a,b ∊ Q+ .

Sol : 

Let Q+is the set of all +ve rational numbers and for   

a,b∊Q+ .

We have the operation * such that a*b = ab / 3 .

We now prove that ( Q+ , * ) is an abelian group .

Closure law :

Let a,b∊Q+ . Then a*b = ab / 3 ∊ Q+

Therefore * is a binary operation in Q+ .



Associative law :
Let a , b , c ∊ Q+.
Now a*(b*c) = a*(bc/3) = a(bc/3) / 3 = abc / 9
and (a*b)*c = (ab /3 )*c = (ab/3)c / 3 = abc / 9
Therefore a*(b*c) = (a*b)*c
Therefore * is associative on Q+ .
Existence of identity :
Let a ∊ Q+ and e ∊ Q+ such that a*e = e*a = a .
Now a*e = a⟹ ae / 3 = a
⟹a(e-3)=0 ⟹ e-3 = 0⟹e = 3 ∊ Q+

Clearly a*e = a*3 = (a x 3 ) / 3 = a
Therefore “ e “ is an element in Q+ such that
a*e = e*a = a
Therefore e =3 is the identity element in Q+ .



Existence of inverse :
Let a∊Q+ and b∊Q+ such that a*b =b*a = e .
Now a*b = e ⟹ ab / 3 = e ⟹b = 3e / a = 9/a .
Therefore for every a∊Q+ there exists b = 9/a ∊ Q+ such 
that a*b =b*a =e .
Therefore “a” has inverse in Q+ .

Commutative :

For a , b ∊ Q+⟹a*b = b*a .

Since a*b = ab/ 3 = ba /3 = b*a .

Therefore ‘’ * ‘’ is commutative in Q+ .

Hence ( Q+ , * ) is an abelian group .



Theorem:
Prove that cancellation laws holds in a group .
Let G be a group . Then for a , b , c ∊ G ; ab = ac ⟹b = c 
and ba = ca ⟹b=c.

Proof: 

Let G be a group and e be the identity in G .

For a , b , c ∊ G , ab = ac ⟹a-1(ab) = a-1(ac)

⟹( a-1a)b = (a-1a)c

⟹eb = ec

⟹b = c

⟹left cancellation law



Similarly  ba = ca ⟹(ba)a-1 = (ca)a-1

⟹b(aa-1) = c(aa-1)
⟹be = ce
⟹b = c
⟹right cancellation law

Therefore for a , b , c ∊ G ;
ab = ac⟹b = c (left Cancellation law )

and ba = ca⟹b=c (right Cancellation law)
Therefore cancellation laws holds in a group .



Theorem:
If every element of a group ( G , · ) is its own inverse , 
show that  ( G,· ) is an abelian group .

Proof:

Given ( G , · ) is a group .

Let a , b ∊ G . By hypothesis a-1 = a and b-1 = b .

Then ab ∊ G and hence (ab)-1 = ab.

Now (ab)-1 = ab⟹ b-1a-1 = ab

⟹ ba = ab

⟹ ( G,· ) is an abelian group .



Theorem:
In a group G for a,b ∊ G, 
(ab)2 = a2b2⇔G is abelian.

Proof:
Case:1
Let a , b ∊ G and (ab)2 = a2b2

To prove that G is abelian .
Now (ab)2 = a2b2⟹ (ab)(ab)=(aa)(bb)

⟹ a(ab)b =a(ab)b
⟹ ba = ab
⟹ G is abelian

Case: 2 
Let G be abelian
To prove that (ab)2 = a2b2

Now (ab)2 = (ab)(ab) = a(ba)b = a(ab)b = (aa)(bb) = a2b2 .
Therefore (ab)2 = a2b2⟺ G is abelian .


