







# GROUP THEORY



# GROUP THEORY

# **Binary Operation:**

Let S be a non-empty set. If  $f: S \times S \rightarrow S$  is a mapping, then f is called binary operation or binary composition in S or on S.

Thus if a relation in S such that every pair (distinct or equal) of elements of S taken in definite order is associated with a unique element of S then it is called a binary operation in S. Otherwise the relation is not binary operation in S and the relation is simply an operation in S.

# **Symbolism:**

- For a,b  $\in$  S => a + b  $\in$  S then "+" is a binary operation in S.
- For a,b  $\in$  S => a b  $\in$  S then "• " is a binary operation in S.
- For a,b  $\in$  S => aob  $\in$  S then "0" is a binary operation in S.
- This also called closure law.

- Ex : 1. +, are binary operations in N, since for a,b  $\in$  N => a + b  $\in$  N and a b  $\in$  N. In other words N is said to be closed w.r.t the operation '+ ' and ' '
- 2. the operations subtraction ( ) and division (  $\div$  ) are not binary operations in N for 3, 5  $\in$  N does not imply 3-5 $\in$  N and 3/5  $\in$  N.

# **Algebraic Structure:**

A non-empty set G equipped with one or more binary operations is called an algebraic structure or an algebraic system.

If 'o' is a binary operation on G, then the algebraic structure is written as (G,o).

Ex: (N,+), (Q,-), (R,+) are algebraic structure.

# **Associative Law:**

- 'o' is a binary operation in a set S. If for a,b,c  $\in$  S, (aob)oc = ao(boc) then 'o' is said to be associative in S. This is called Associative law . Otherwise 'o' is said to be not associative in S.
- Ex: 1. '+ 'and '. 'are associative in N since for a,b,c  $\in$  N, (a+b)+c = a+(b+c) and a(bc)=(ab)c.
  - 2. 'o' is a composition in R such that aob = a+3b for a,b  $\in$  R. Then 'o' is not associative in R.

# **Identity Element:**

Let S be a non-empty set and 'o' be a binary operation on S.

1. If there exists an element  $e_1 \in S$  such that  $e_1 \circ a = a$  for  $a \in S$  then  $e_1$  is called a left identity of S w.r.t. the operation 'o'

- 2. If there exists an element  $e_2 \in S$  such that  $a \circ e_2 = a$  for  $a \in S$  then  $e_2$  is called a right identity of S w.r.t. the operation 'o'.
- 3. If there exists an element  $e \in S$  such that e is both left and a right identity of S w.r.t. 'O', then e is called an identity of S .
- Ex: 1.In the algebraic system ( Z,+ ), the number 0 is an identity element.
  - 2. In the algebraic system ( R, ), the number 1 is an identity element.

#### Invertible Element:

- Let (S,O) be an algebraic structure with the identity element e in S w.r.t. 'O'.
- i) An element  $a \in S$  is said to be left invertible or left regular if there exists an element  $x \in S$  such that  $x \circ a = e$ .  $x \in S$  such that  $x \circ a = e$ .

- ii) An element  $a \in S$  is said to be right invertible or right regular if there exists an element  $y \in S$  such that  $a \circ y = e$ . y is called a right inverse of a, w.r.t. 'o'.
- Iii) An element x which is both a left inverse and a right inverse of 'a' is called an inverse of 'a' and 'a' is said to be invertible or regular.

# Semi Group:

An Algebraic structure (S,O) is called a semi Group if the binary operation 'O' is associative in S.

- Ex: 1. (N,+) is a semi Group. For a,b  $\in$  N => a + b  $\in$  N and (a+b)+c = a+(b+c).
  - 2. ( Q,- ) is not a semi Group . For 5, 3/2, 1 ∈ Q does not imply {5-(3/2) } -1 = 5- {(3/2)-1}.

#### **Monoid:**

A semi Group (S,O) with the identity element w.r.t. 'O' is known as a monoid. i.e (S,O) is a monoid if S is a non-empty set and 'O' a binary operation in S such that 'O' is associative and there exists an identity element w.r.t. 'O'.

- Ex: 1. (Z,+) is a monoid and the identity element is 0.
- 2. ( Z,. ) is a monoid and the identity element is 1. Group:

If G is a non-empty set and 'o' is a binary operation defined on G such that the following three laws are Satisfied then (G,o) is a group.

- i). Associative law
- ii). Identity law
- iii). Inverse law.
- Ex: (Z,+), (Q,+), (R,+), (C,+) are all groups.

#### Note:

- i) A group is an algebraic structure. It can also be written by < G,0 >.
- Ii) A semi group (G,O) is a group if identity law and inverse law are satisfied.
- Iii) A monoid (G,○) is a group if inverse law is satisfied.

# **Abelian Group or Commutative Group:**

For the Group a,b  $\epsilon$  G, aob = boa is satisfied , then (G,O) is called an abelian group or a commutative group.

Ex: (Z,+) is a commutative group.

# Finite and Infinite Group:

If the set G contains a finite number of elements then the group (G,O) is called a finite group.

Otherwise the group ( $G,\circ$ ) is called an infinite group.

# Order of a Group:

The number of elements in a finite group (G,O) is called the order of the group and is denoted by O(G). If G is infinite, then we say that the order of G is infinite. Thus: i) If the number of elements in a group G is n, then O(G) = n.

- ii) If the group G is finite we some times write  $O(G) < \infty$ . iii ) If O(G) = 2n,  $n \in N$ , we say that the group is of even order.
- iv ) If O(G) = 2n-1,  $n \in N$  we say that the group is of odd order.

# **Cancellation Laws:**

Let S be non-empty set and  $\circ$  be binary operation on S. For a,b,c  $\in$  S,

- i) aob = aoc => b = c (is called left cancelation law)
- ii) boa = coa => b = c (is called Right cancelation law )
- i) and (ii) are called cancelation laws.

In a group G, identity element is unique.

# **Proof:**

If possible let  $e_1$ ,  $e_2$  be two identity elements in the group (G, $\circ$ ).

Therefore  $e_1 \circ e_2 = e_2 \circ e_1 = e_2$  is an identity in G..... (i)

And  $e_2 \circ e_1 = e_1 \circ e_2 = e_1$  is an identity in ......(ii)

Therefore from (i) and (ii) we get  $e_1=e_2$ 

Hence identity element is unique.

In a group G, inverse of any element is unique.

# **Proof:**

Let e be the identity element in the group (G,  $\bullet$  ). If a  $\epsilon$  G then a will have an inverse.

If possible, let b,  $c \in G$  be two inverses of a in G.

Therefore a.b = b.a = e and a.c = c.a = e.

Now c.(a.b) = c.e = c .....(i)

And c.(a.b) = (c.a).b = e.b = b .....(ii)

From (i) and (ii) we get b = c.

Therefore inverse of any element is unique.

1. Show that set  $Q_+$  of all +ve rational numbers forms an abelian group under the composition defined by \* such that a\*b = ab/3 for  $a,b \in Q_+$ .

# Sol:

Let  $Q_+$  is the set of all +ve rational numbers and for  $a,b\in Q_+$ .

We have the operation \* such that a\*b = ab / 3.

We now prove that  $(Q_+, *)$  is an abelian group.

# Closure law:

Let  $a,b \in Q_+$ . Then  $a*b = ab / 3 \in Q_+$ 

Therefore \* is a binary operation in  $Q_{+}$ .

# Associative law:

Let a, b,  $c \in Q_+$ . Now  $a^*(b^*c) = a^*(bc/3) = a(bc/3) / 3 = abc / 9$ and  $(a^*b)^*c = (ab / 3)^*c = (ab/3)c / 3 = abc / 9$ Therefore  $a^*(b^*c) = (a^*b)^*c$ Therefore \* is associative on  $Q_+$ .

# Existence of identity:

Let  $a \in Q_+$  and  $e \in Q_+$  such that  $a^*e = e^*a = a$ . Now  $a^*e = a \implies ae / 3 = a$   $\implies a(e-3)=0 \implies e-3=0 \implies e=3 \in Q_+$ Clearly  $a^*e = a^*3 = (a \times 3) / 3 = a$ Therefore " e " is an element in  $Q_+$  such that  $a^*e = e^*a = a$ Therefore e=3 is the identity element in  $Q_+$ .

#### Existence of inverse:

Let  $a \in Q_+$  and  $b \in Q_+$  such that a\*b = b\*a = e.

Now  $a*b = e \implies ab / 3 = e \implies b = 3e / a = 9/a$ .

Therefore for every  $a \in Q_+$  there exists  $b = 9/a \in Q_+$  such that a\*b = b\*a = e.

Therefore "a" has inverse in Q<sub>+</sub>.

#### Commutative:

For a,  $b \in Q_+ \Longrightarrow a^*b = b^*a$ .

Since a\*b = ab/3 = ba/3 = b\*a.

Therefore " \* " is commutative in  $Q_{+}$ .

Hence  $(Q_+, *)$  is an abelian group.

Prove that cancellation laws holds in a group. Let G be a group. Then for a, b,  $c \in G$ ; ab = ac  $\Longrightarrow$ b = c and ba = ca  $\Longrightarrow$ b=c.

# **Proof:**

Let G be a group and e be the identity in G.

For a, b, 
$$c \in G$$
,  $ab = ac \implies a^{-1}(ab) = a^{-1}(ac)$ 

$$\Rightarrow$$
 (a<sup>-1</sup>a)b = (a<sup>-1</sup>a)c

$$\Rightarrow$$
eb = ec

$$\Longrightarrow$$
b = c

⇒left cancellation law

Similarly ba = ca 
$$\Rightarrow$$
 (ba)a<sup>-1</sup> = (ca)a<sup>-1</sup>  
 $\Rightarrow$ b(aa<sup>-1</sup>) = c(aa<sup>-1</sup>)  
 $\Rightarrow$ be = ce  
 $\Rightarrow$ b = c  
 $\Rightarrow$ right cancellation law  
Therefore for a , b , c  $\in$  G ;  
ab = ac  $\Rightarrow$ b = c (left Cancellation law )  
and ba = ca  $\Rightarrow$ b=c (right Cancellation law)  
Therefore cancellation laws holds in a group .

If every element of a group  $(G, \cdot)$  is its own inverse, show that  $(G, \cdot)$  is an abelian group.

# Proof:

Given ( $G, \cdot$ ) is a group.

Let a, b  $\in$  G. By hypothesis  $a^{-1} = a$  and  $b^{-1} = b$ .

Then  $ab \in G$  and hence  $(ab)^{-1} = ab$ .

Now  $(ab)^{-1} = ab \implies b^{-1}a^{-1} = ab$ 

 $\Rightarrow$  ba = ab

 $\Rightarrow$  ( G,· ) is an abelian group .

In a group G for a,b  $\in$  G, (ab)<sup>2</sup> = a<sup>2</sup>b<sup>2</sup>  $\Leftrightarrow$ G is abelian.

#### **Proof:**

#### Case:1

Let a, b  $\in$  G and  $(ab)^2 = a^2b^2$ To prove that G is abelian. Now  $(ab)^2 = a^2b^2 \Longrightarrow (ab)(ab) = (aa)(bb)$   $\Longrightarrow a(ab)b = a(ab)b$   $\Longrightarrow ba = ab$  $\Longrightarrow G$  is abelian

#### Case: 2

Let G be abelian To prove that  $(ab)^2 = a^2b^2$ Now  $(ab)^2 = (ab)(ab) = a(ba)b = a(ab)b = (aa)(bb) = a^2b^2$ . Therefore  $(ab)^2 = a^2b^2 \iff G$  is abelian.