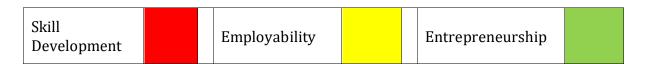
Estd. 1884	P.R.Government College (Autonomous): KAKINADA		Program&Semester Major & Minor (II Sem)				
Course Code	TITLE OF THE COURSE	w.e.f.2023-24 admitted Batch					
MAT-201	Differential Equations & Problem Solving Session						
Teaching	HoursAllocated:60(Theory)	L	Т	P	С		
Pre-requisites:	Basic Mathematics Knowledge	3	0	0	3		


Course Objectives:

To provide students with an introduction to the theory of ordinary differential equations through applications, methods of solution, and numerical approximations.

Course Outcomes:

On Co	ompletion of the course, the students will be able to-
CO1	Solve linear differential equations
CO2	Convert non - exact homogeneous equations to exact differential equations by using integrating factors.
CO3	Know the methods of finding solutions of differential equations of the first order but not of the first degree.
CO4	Understand the concept and apply appropriate methods for solving differential equations.

Course with focus on employability/entrepreneurship /Skill Development modules

COURSE SYLLABUS:

UNIT – I: Differential Equations of first order and first degree

Linear Differential Equations; Differential equations reducible to linear form; Exact differential equations; Integrating factors, Equations reducible exact equations by integrating factors:

1. Inspection Method 2. 1 / Mx + Ny 3. 1 / Mx - Ny

UNIT – II: Orthogonal Trajectory and Differential Equations of first order but not of the first degree

Differential Equations of first order but not of the first degree :

Equations solvable for p; Equations solvable for y, Equations solvable for x - Clairaut's Equation.

Orthogonal trajectories: Cartesian and polar co- ordinates.

UNIT – III: Higher order linear differential equations

Solution of homogeneous linear differential equations of order n with constant coefficients; Solution of the non-homogeneous linear differential equations with constant coefficients by means of polynomial operators.

P.I. of f(D)y = Q when $Q = e^{ax}$

P.I. of f(D)y = Q when Q is b sin ax or b cos ax.

UNIT – IV: Higher order linear differential equations (continued)

Solution of the non-homogeneous linear differential equations with constant coefficients. P.I. of f(D)y = Q when $Q = bx^k$

P.I. of f(D)y = Q when $Q = be^{ax} V$

P.I. of f(D)y = Q when Q = xV

UNIT -V: Higher order linear differential equations with non-constant coefficients

Linear differential equations with non-constant coefficients: The Cauchy-Euler Equation ;Legender's Equations, Method of variation of parameters.

Activities

Seminar/ Quiz/ Assignments/ Applications of Differential Equations to Real life Problem / Problem Solving Sessions.

Text Book

Differential Equations and Their Applications by Zafar Ahsan, published by Prentice-Hall of India Pvt. Ltd, New Delhi-Second edition.

Reference Books

- Ordinary and Partial Differential Equations by Dr. M.D. Raisinghania, published by S. Chand &Company, New Delhi.
- 2. Differential Equations with applications and programs S. Balachandra Rao & HR Anuradha-Universities Press.

3. Differential Equations -Srinivas Vangala&Madhu Rajesh, published by Spectrum University Press.

Additional Inputs:

Total Differential Equations

CO-POMapping:

(1:Slight[Low]; 2:Moderate[Medium]; 3:Substantial[High], '-':NoCorrelation)

		P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PSO1	PSO2	PSO3
(201	3	3	2	3	3	3	1	2	2	3	2	3	2
(202	3	2	3	3	2	3	3	1	3	3	3	2	1
(203	2	3	2	3	2	3	2	2	2	3	2	2	3
(204	3	2	3	2	2	2	3	3	1	1	3	1	2

BLUE PRINT FOR QUESTION PAPER PATTERN COURSE-I, DIFFERENTIAL EQUATIONS

Unit	ТОРІС	S.A.Q	E.Q	Marks allotted to the Unit
I	Differential Equations of first order and first degree	2	2	20
II	Orthogonal Trajectory and Differential Equations of first order but not of the first degree	2	1	20
III	Higher order linear differential equations	1	1	15
IV	Higher order linear differential equations (continued)	1	1	15
V	Higher order linear differential equations with non-constant coefficients	1	1	15
	Total	7	6	95

S.A.Q. = Short answer questions (5 marks)

E.Q = Essay questions (10 marks)

Short answer questions : $4 \times 5 = 20 \text{ M}$

Essay questions : $3 \times 10 = 30 \text{ M}$

.....

Total Marks = 50 M

.....

P.R. GOVT. COLLEGE (AUTONOMOUS), KAKINADA

I year B.Sc., Degree Examinations - I Semester Mathematics Course-I: Differential Equations (w.e.f. 2023-234Admitted Batch) Model Paper (w.e.f. 2023-2024)

.....

Time: 2 Hours Max Marks: 50M

Section -I

Answer any three of the following questions. Must attempt at least one question from each part. Each question carries 10 Marks. $3 \times 10 = 30M$

Part - A

- 1. Solve (1 + xy)x dy + (1 xy)ydx = 0.
- 2. Solve $\frac{dy}{dx}(x^2y^3 + xy) = 1$
- 3. Solve $p^2 + 2py \cot x = y^2$

Part - B

- 4. Solve $(D^2 4D + 3)y = \sin 3x \cos 2x$.
- 5. Solve $(D^2 4D + 4)y = 8x^2e^{2x}sin2x$
- 6. Solve [$(1 + x)^2 D^2 + (1 + x)D + 1$] $y = 4 \cos \log (1 + x)$.

Section II

Answer any four of the following questions. Each question carries 5 marks. $4 \times 5 = 20 M$

- 7. Solve $(y e^{\sin^{-1}x})\frac{dx}{dy} + \sqrt{1 x^2} = 0$
- 8. Solve $(e^{y} + 1) \cos x \, dx + e^{y} \sin x \, dy = 0$.
- 9. Find the Orthogonal trajectories of family of curves $r = a(1 + \cos\theta)$.
- 10. Solve (py + x)(px y) = 2p.
- 11. Solve $(D^2 3D + 2)y = Coshx$.
- 12. Solve $(D^2 2D + 1)y = x^2e^{3x}$.
- 13. Solve $(D^2 + 1)y = Secx$ by method of variation of parameters.

Annon-	P.R.Government College (Autonomous) KAKINADA		Program & Semester I Major & Minor (II Sem) w.e.f.2023-24 admitted				
Course Code	TITLE OF THE COURSE		Ba	tch			
MAT-201P	Differential Equations & Problem Solving Sessions Practical Course						
Teaching	Hours Allocated:30(Practical's)	L	T	P	C		
Pre-requisites:	Basic Mathematics Knowledge	-	-	2	1		

UNIT – I: Differential Equations of first order and first degree

Linear Differential Equations; Differential equations reducible to linear form; Exact differential equations; Integrating factors, Equations reducible exact equations by integrating factors:

1. Inspection Method 2. 1 / Mx + Ny 3. 1 / Mx - Ny

UNIT – II: Orthogonal Trajectory and Differential Equations of first order but not of the first degree

Differential Equations of first order but not of the first degree:

Equations solvable for p; Equations solvable for y, Equations solvable for x - Clairaut's Equation.

Orthogonal trajectories: Cartesian and polar co- ordinates.

UNIT – III: Higher order linear differential equations

Solution of homogeneous linear differential equations of order n with constant coefficients; Solution of the non-homogeneous linear differential equations with constant coefficients by means of polynomial operators.

P.I. of f(D)y = Q when $Q = e^{ax}$

P.I. of f(D)y = Q when Q is b sin ax or b cos ax.

UNIT – IV: Higher order linear differential equations (continued)

Solution of the non-homogeneous linear differential equations with constant coefficients. P.I. of f(D)y = Q when $Q = bx^k$

P.I. of f(D)y = Q when $Q = be^{ax} V$

P.I. of f(D)y = Q when Q = xV

UNIT -V: Higher order linear differential equations with non-constant coefficients

Linear differential equations with non-constant coefficients : The Cauchy-Euler Equation ;Legender's Equations, Method of variation of parameters.

BLUE PRINT FOR PRACTICAL PAPER PATTERN COURSE-I, DIFFERENTIAL EQUATIONS

Unit	ТОРІС	E.Q	Marks allotted to the Unit
I	Differential Equations of first order and first degree	2	12
II	Orthogonal Trajectory and Differential Equations of first order but not of the first degree	2	12
III	Higher order linear differential equations	1	06
IV	Higher order linear differential equations (continued)	2	12
V	Higher order linear differential equations with non-constant coefficients	1	06
	Total	08	48

Semester – I End Practical Examinations Scheme of Valuation for Practical's

Time: 2 Hours Max. Marks: 50

➤ Record - 10 Marks

➤ Viva voce - 10 Marks

➤ Test - 30 Marks

Answer any 5 questions. At least 2 questions from each section. Each question carries 6 marks.

P.R. GOVT. COLLEGE (AUTONOMOUS), KAKINADA

I year B.Sc., Degree Examinations - II Semester Mathematics Course-I: Differential Equations (w.e.f. 2023-24 Admitted Batch) Practical Model Paper (w.e.f. 2023-2024)

.....

Time: 2Hrs Max. Marks:

50M

Answer any 5questions. At least 2 questions from each section. SECTION - A

 $5 \times 6 = 30 \text{ Marks}$

- 1. Solve $\frac{dy}{dx} \left(x^2 y^3 + xy \right) = 1$
- 2. Solve $x^2y dx (x^3 + y^3)dy = 0$.
- 3. Show that the family of confocal conics $\frac{x^2}{a^2 + \lambda} + \frac{y^2}{b^2 + \lambda} = 1$ is self-orthogonal, where λ

is the Parameter.

4. Solve $2px = 2 \tan y + p^3 \cos^2 y$

SECTION - B

- 5. Solve $(D^2 4D + 3)y = \sin 3x \cos 2x$.
- 6. Solve $(D^2 4D + 4)y = 8x^2e^{2x}\sin 2x$
- 7. Solve ($D^4 + 2D^2 + 1$) $y = x^2 \cos x$
- 8. Solve $[(1+x)^2 D^2 + (1+x)D + 1]y = 4 \cos \log (1+x)$.
 - > Record 10 Marks
 - ➤ Viva voce 10 Marks